Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Health Sci Rep ; 6(5): e1275, 2023 May.
Article in English | MEDLINE | ID: covidwho-2323923

ABSTRACT

Background and Aims: Saliva samples are less invasive and more convenient for patients than naso- and/or oropharynx swabs (NOS). However, there is no US Food and Drug Administration-approved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapid antigen test kit, which can be useful in a prolonged pandemic to reduce transmission by allowing suspected individuals to self-sampling. We evaluated the performances of High sensitive AQ+ Rapid SARS-CoV-2 Antigen Test (AQ+ kit) using nasopharyngeal swabs (NPs) and saliva specimens from the same patients in laboratory conditions. Methods: The real-time reverse transcription-polymerase chain reaction (rRT-PCR) test result was used for screening the inrolled individuals and compared as the gold standard. NP and saliva samples were collected from 100 rRT-PCR positives and 100 negative individuals and tested with an AQ+ kit. Results: The AQ+ kit showed good performances in both NP and saliva samples with an overall accuracy of 98.5% and 94.0%, and sensitivity of 97.0% and 88.0%, respectively. In both cases, specificity was 100%. AQ+ kit performance with saliva was in the range of the World Health Organization recommended value. Conclusion: xOur findings indicate that the saliva specimen can be used as an alternative and less invasive to NPs for quick and reliable SARS-CoV-2 antigen detection.

2.
Health Sci Rep ; 6(4): e1213, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2300667

ABSTRACT

Background and Aims: The coronavirus disease 2019 (COVID-19) has brought serious threats to public health worldwide. Nasopharyngeal, nasal swabs, and saliva specimens are used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, limited data are available on the performance of less invasive nasal swab for testing COVID-19. This study aimed to compare the diagnostic performance of nasal swabs with nasopharyngeal swabs using real-time reverse transcription polymerase chain reaction (RT-PCR) considering viral load, onset of symptoms, and disease severity. Methods: A total of 449 suspected COVIDCOVID-19 individuals were recruited. Both nasopharyngeal and nasal swabs were collected from the same individual. Viral RNA was extracted and tested by real-time RT-PCR. Metadata were collected using structured questionnaire and analyzed by SPSS and MedCalc software. Results: The overall sensitivity of the nasopharyngeal swab was 96.6%, and the nasal swab was 83.4%. The sensitivity of nasal swabs was more than 97.7% for low and moderate C t values. Moreover, the performance of nasal swab was very high (>87%) for hospitalized patients and at the later stage >7 days of onset of symptoms. Conclusion: Less invasive nasal swab sampling with adequate sensitivity can be used as an alternative to nasopharyngeal swabs for the detection of SARS-CoV-2 by real-time RT-PCR.

4.
Trop Med Infect Dis ; 7(4)2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-2279941

ABSTRACT

Community transmission of SARS-CoV-2 in densely populated countries has been a topic of concern from the beginning of the pandemic. Evidence of community transmission of SARS-CoV-2 according to population density gradient and socio-economic status (SES) is limited. In June-September 2020, we conducted a descriptive longitudinal study to determine the community transmission of SARS-CoV-2 in high- and low-density areas in Dhaka city. The Secondary Attack Rate (SAR) was 10% in high-density areas compared to 20% in low-density areas. People with high SES had a significantly higher level of SARS-CoV-2-specific Immunoglobulin G (IgG) antibodies on study days 1 (p = 0.01) and 28 (p = 0.03) compared to those with low SES in high-density areas. In contrast, the levels of seropositivity of SARS-CoV-2-specific Immunoglobulin M (IgM) were comparable (p > 0.05) in people with high and low SES on both study days 1 and 28 in both high- and low-density areas. Due to the similar household size, no differences in the seropositivity rates depending on the population gradient were observed. However, people with high SES showed higher seroconversion rates compared to people with low SES. As no difference was observed based on population density, the SES might play a role in SARS-CoV-2 transmission, an issue that calls for further in-depth studies to better understand the community transmission of SARS-CoV-2.

5.
Microbiol Resour Announc ; : e0095022, 2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2231048

ABSTRACT

We announce the coding-complete genome sequences of 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron strains obtained from Bangladeshi individuals. The Oxford Nanopore Technologies sequencing platform was utilized to generate the genomic data, deploying ARTIC Network-based amplicon sequencing.

6.
Trop Med Infect Dis ; 7(12)2022 Dec 19.
Article in English | MEDLINE | ID: covidwho-2163613

ABSTRACT

We aimed to explore coronavirus disease 2019 (COVID-19) risk perception and prevention practices among people living in high- and low-population density areas in Dhaka, Bangladesh. A total of 623 patients with confirmed COVID-19 agreed to participate in the survey. Additionally, we purposively selected 14 participants from diverse economic and occupational groups and conducted qualitative interviews for them accordingly. Approximately 70% of the respondents had low socioeconomic status. Among the 623 respondents, 146 were from low-density areas, and 477 were from high-density areas. The findings showed that study participants perceived COVID-19 as a punishment from the Almighty, especially for non-Muslims, and were not concerned about its severity. They also believed that coronavirus would not survive in hot temperatures or negatively impact Bangladeshis. This study revealed that people were reluctant to undergo COVID-19 testing. Family members hid if anyone tested positive for COVID-19 or did not adhere to institutional isolation. The findings showed that participants were not concerned about COVID-19 and believed that coronavirus would not have a devastating impact on Bangladeshis; thus, they were reluctant to follow prevention measures and undergo testing. Tailored interventions for specific targeted groups would be relevant in mitigating the prevailing misconceptions.

7.
Assam Journal of Internal Medicine ; 11(2):20-23, 2021.
Article in English | ProQuest Central | ID: covidwho-2144102

ABSTRACT

Context: The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, in December 2019. The management plan is supportive care with oxygen supplementation and mechanical ventilation. US FDA approved convalescent plasma (CP) for COVID-19 for clinical trials and as an emergency investigational new drug. Although numerous trials are currently investigating the safety and efficacy of CP in COVID-19 patients, there is a paucity of ongoing and published studies evaluating the CP donors’ side. This retrospective study reports the CP donors’ selection and deferrals. Aim: To evaluate and analyze the donor deferral pattern and its causes among CP donors in a tertiary care hospital blood bank apheresis unit. Settings and Design: Hospital-based retrospective analysis. Subjects and Methods: Donors aged 18–65 years who had recovered from COVID-19 at least 4 weeks previously coming for plasma donation were retrospectively analyzed from July 25, 2020 to January 24, 2021 for a period of 6 months at blood bank apheresis unit, Assam Medical College and Hospital. Results: A total of 396 potential plasma donors were screened during the study period. The donor deferral rate was 39.1%. The permanent deferral was 36.8%, and the temporary deferral was 63.2%. The maximum number of donors deferred because of low antibody (18.7%) followed by low hemoglobin (14.8%). Associated comorbidities, low platelet count, repeat reverse transcription-polymerase chain reaction positivity, transfusion transmitted infection reactivity, intake of medicines, infections, vaccination, and underweight were other causes identified. Conclusion: The pattern of donor deferral is an important tool for blood safety and also provides key areas to focus on a demographic region or policy formulation for donor selection as well as to ensure donor safety.

8.
Heliyon ; 8(10): e11043, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2113687

ABSTRACT

Epidemiological data of specific respiratory pathogens from the pre-COVID-19 period are essential to determine the effects of the COVID-19 pandemic on other respiratory infections. In this study, we revealed the pre-COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. We tested 3170 samples collected from 2008 to 2012 for a panel of respiratory viruses; RSV, human metapneumovirus (hMPV), human parainfluenza viruses (hPIV) 1, 2, 3, and adenovirus. Five hundred fifty-five samples (17.5 %) were positive for RSV, including 2.5% having co-infections with other viruses. Genotypic characterization of RSV showed that RSV-A (82%) contributed more acute respiratory infections than RSV-B (18%). Clinical features were similar with RSV-A and RSV-B infections. However, children with RSV-B were more likely to have upper respiratory infections (URI) (10% vs. 29%, p = 0.03). Among RSV-A cases, hospitalization was higher for ON1 cases (25%, ON1 vs. 8%, NA1, p = 0.04), whereas the recovery without a disability was higher among the NA1 cases (56%, ON1 vs. 88%, NA1, p = 0.02). The time to the most recent common ancestor (TMRCA) for RSV in Bangladesh was 1949 for RSV-A and 1944 for RSV-B. This study revealed the genotypic diversity and evolutionary relatedness of RSV strains in Bangladesh and provided pre-COVID molecular epidemiology data to understand better the COVID-19 impact on upcoming RSV epidemiology in Bangladesh.

9.
Vaccines (Basel) ; 10(9)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2010365

ABSTRACT

BACKGROUND: The adaptive immune response is a crucial component of the protective immunity against SARS-CoV-2, generated after infection or vaccination. METHODS: We studied antibody titers, neutralizing antibodies and cellular immune responses to four different COVID-19 vaccines, namely Pfizer-BioNTech, Moderna Spikevax, AstraZeneca and Sinopharm vaccines in the Bangladeshi population (n = 1780). RESULTS: mRNA vaccines Moderna (14,655 ± 11.3) and Pfizer (13,772 ± 11.5) elicited significantly higher anti-Spike (S) antibody titers compared to the Adenovector vaccine AstraZeneca (2443 ± 12.8) and inactivated vaccine Sinopharm (1150 ± 11.2). SARS-CoV-2-specific neutralizing antibodies as well as IFN-γ-secreting lymphocytes were more abundant in Pfizer and Moderna vaccine recipients compared to AstraZeneca and Sinopharm vaccine recipients. Participants previously infected with SARS-CoV-2 exhibited higher post-vaccine immune responses (S-specific and neutralizing antibodies, IFN-γ-secreting cells) compared to uninfected participants. Memory B (BMEM), total CD8+T, CD4+ central memory (CD4+CM) and T-regulatory (TREG) cells were more numerous in AstraZeneca vaccine recipients compared to other vaccine recipients. Plasmablasts, B-regulatory (BREG) and CD4+ effector (CD4+EFF) cells were more numerous in mRNA vaccine recipients. CONCLUSIONS: mRNA vaccines generated a higher antibody response, while a differential cellular response was observed for different vaccine types, suggesting that both cellular and humoral responses are important in immune monitoring of different types of vaccines.

10.
BMJ Open ; 12(6): e058074, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1874556

ABSTRACT

OBJECTIVE: To identify factors associated with COVID-19 positivity among staff and their family members of icddr,b, a health research institute located in Bangladesh. SETTING: Dhaka, Bangladesh. PARTICIPANTS: A total of 4295 symptomatic people were tested for SARS-CoV-2 by reverse-transcription PCR between 19 March 2020 and 15 April 2021. Multivariable logistic regression was done to identify the factors associated with COVID-19 positivity by contrasting test positives with test negatives. RESULT: Forty-three per cent of the participants were tested positive for SARS-CoV-2. The median age was high in positive cases (37 years vs 34 years). Among the positive cases, 97% were recovered, 2.1% had reinfections, 24 died and 41 were active cases as of 15 April 2021. Multivariable regression analysis showed that age more than 60 years (adjusted OR (aOR)=2.1, 95% CI 1.3 to 3.3; p<0.05), blood group AB (aOR=1.5, 95% CI 1.1 to 2; p<0.05), fever (aOR=3.1, 95% CI 2.6 to 3.7; p<0.05), cough (aOR=1.3, 95% CI 1.1 to 1.6; p<0.05) and anosmia (aOR=2.7, 95% CI 1.3 to 5.7; p<0.05) were significantly associated with higher odds of being COVID-19 positive when compared with participants who were tested negative. CONCLUSIONS: The study findings suggest that older age, fever, cough and anosmia were associated with COVID-19 among the study participants.


Subject(s)
COVID-19 , Adult , Anosmia , Bangladesh/epidemiology , COVID-19/epidemiology , Case-Control Studies , Cough , Family , Health Services Research , Humans , Middle Aged , SARS-CoV-2
11.
Journal of Globalization and Development ; 12(2):221-261, 2021.
Article in English | ProQuest Central | ID: covidwho-1837710

ABSTRACT

Over the past four decades Bangladesh has built enough domestic productive capacity in the pharmaceuticals and related industries to generate manufacturing capacity and employment to provide access to medicines in the country and to become a modest exporter of medicines as well. This paper traces the role played by government policy in fostering Bangladesh’s burgeoning pharmaceuticals sector and then examines the extent to which such policies would have been permissible under World Trade Organization (WTO) rules and the rules of recent trade and investment treaties. Bangladesh has not had to adhere to such rules given its status as a Least Developed Country (LDC) but will face those rules as it may graduate from LDC status in the coming years. We find that a significant amount of Bangladesh’s policies would not have been permitted under the WTO, and even more policy space would be constrained under other regional and bilateral trade and investment treaties. These findings reveal that Bangladesh will face a series of challenges as it graduates from LDC status in its efforts to build its domestic pharmaceutical industry moving forward. Our findings also pinpoint challenges for current WTO and other trade and investment treaty members who now seek to build domestic productive capacity in this sector in the wake of the COVID-19 pandemic.

12.
Tropical Medicine and Infectious Disease ; 7(4):53, 2022.
Article in English | MDPI | ID: covidwho-1762611

ABSTRACT

Community transmission of SARS-CoV-2 in densely populated countries has been a topic of concern from the beginning of the pandemic. Evidence of community transmission of SARS-CoV-2 according to population density gradient and socio-economic status (SES) is limited. In June–September 2020, we conducted a descriptive longitudinal study to determine the community transmission of SARS-CoV-2 in high- and low-density areas in Dhaka city. The Secondary Attack Rate (SAR) was 10% in high-density areas compared to 20% in low-density areas. People with high SES had a significantly higher level of SARS-CoV-2-specific Immunoglobulin G (IgG) antibodies on study days 1 (p = 0.01) and 28 (p = 0.03) compared to those with low SES in high-density areas. In contrast, the levels of seropositivity of SARS-CoV-2-specific Immunoglobulin M (IgM) were comparable (p > 0.05) in people with high and low SES on both study days 1 and 28 in both high- and low-density areas. Due to the similar household size, no differences in the seropositivity rates depending on the population gradient were observed. However, people with high SES showed higher seroconversion rates compared to people with low SES. As no difference was observed based on population density, the SES might play a role in SARS-CoV-2 transmission, an issue that calls for further in-depth studies to better understand the community transmission of SARS-CoV-2.

13.
Microbiol Resour Announc ; 11(4): e0011922, 2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1759297

ABSTRACT

We report the coding-complete genome sequences of 25 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineage B.1.1.529 Omicron strains obtained from Bangladeshi individuals in samples collected between December 2021 and January 2022. Genomic data were generated by Nanopore sequencing using the amplicon sequencing approach developed by the ARTIC Network.

14.
IJID Reg ; 2: 198-203, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1665003

ABSTRACT

Design: A cross-sectional study was conducted amongst household members in 32 districts of Bangladesh to build knowledge about disease epidemiology and seroepidemiology of coronavirus disease 2019 (COVID-19). Objective: Antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in people between April and October 2020. Results: The national seroprevalence rates of immunoglobulin G (IgG) and IgM were estimated to be 30.4% and 39.7%, respectively. In Dhaka, the seroprevalence of IgG was 35.4% in non-slum areas and 63.5% in slum areas. In areas outside of Dhaka, the seroprevalence of IgG was 37.5% in urban areas and 28.7% in rural areas. Between April and October 2020, the highest seroprevalence rate (57% for IgG and 64% for IgM) was observed in August. IgM antibody was more prevalent in younger participants, while older participants had more frequent IgG seropositivity. Follow-up specimens from patients with COVID-19 and their household members suggested that both IgG and IgM seropositivity increased significantly at day 14 and day 28 compared with day 1 after enrolment. Conclusions: SARS-CoV-2 had spread extensively in Bangladesh by October 2020. This highlights the importance of monitoring seroprevalence data, particularly with the emergence of new SARS-CoV-2 variants over time.

15.
Sci Rep ; 12(1): 1438, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1655618

ABSTRACT

The protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited due to the current vaccination or natural infection is a global concern. We aimed to investigate the rate of SARS-CoV-2 infection and its clinical features among infection-naïve, infected, vaccinated, and post-infection-vaccinated individuals. A cohort was designed among icddr,b staff registered for COVID-19 testing by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). Reinfection cases were confirmed by whole-genome sequencing. From 19 March 2020 to 31 March 2021, 1644 (mean age, 38.4 years and 57% male) participants were enrolled; where 1080 (65.7%) were tested negative and added to the negative cohort. The positive cohort included 750 positive patients (564 from baseline and 186 from negative cohort follow-up), of whom 27.6% were hospitalized and 2.5% died. Among hospitalized patients, 45.9% had severe to critical disease and 42.5% required oxygen support. Hypertension and diabetes mellitus were found significantly higher among the hospitalised patients compared to out-patients; risk ratio 1.3 and 1.6 respectively. The risk of infection among positive cohort was 80.2% lower than negative cohort (95% CI 72.6-85.7%; p < 0.001). Genome sequences showed that genetically distinct SARS-CoV-2 strains were responsible for reinfections. Naturally infected populations were less likely to be reinfected by SARS-CoV-2 than the infection-naïve and vaccinated individuals. Although, reinfected individuals did not suffer severe disease, a remarkable proportion of naturally infected or vaccinated individuals were (re)-infected by the emerging variants.


Subject(s)
COVID-19/pathology , Reinfection/epidemiology , Adult , COVID-19/complications , COVID-19/virology , Cohort Studies , Diabetes Complications/pathology , Female , Humans , Hypertension/complications , Male , Middle Aged , RNA, Viral/analysis , RNA, Viral/metabolism , Reinfection/diagnosis , Reinfection/virology , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Vaccination/statistics & numerical data
16.
Front Microbiol ; 12: 792514, 2021.
Article in English | MEDLINE | ID: covidwho-1581270

ABSTRACT

Background: The emergence of novel variants has been a great deal of international concern since the recently published data suggest that previous infections with SARS-CoV-2 may not protect an individual from new variants. We report a patient had two distinct episodes of COVID-19 with different variants of SARS-CoV-2. Methods: The nasopharyngeal samples collected from the two episodes were subjected to whole-genome sequencing and comparative genome analysis. Results: The first infection presented with mild symptoms, while the second infection presented with severe outcomes which occurred 74 days after the patient recovered from the first episode. He had elevated C-reactive protein, ferritin, and bilateral consolidation as a sign of acute infection. Genome analysis revealed that the strains from the first and second episodes belonged to two distinct Nexstrain clades 20B and 20I and Pangolin lineages B.1.1.25 and B.1.1.7, respectively. A total of 36 mutations were observed in the episode-2 strain when compared with the reference strain Wuhan-Hu-1. Among them, eight mutations were identified in the receptor-binding domain (RBD). Conclusion: Our findings concern whether the immunity acquired by natural infection or mass vaccination could confer adequate protection against the constantly evolving SARS-CoV-2. Therefore, continuous monitoring of genetic variations of SARS-CoV-2 strains is crucial for interventions such as vaccine and drug designs, treatment using monoclonal antibodies, and patient management.

17.
J Clin Lab Anal ; 36(2): e24203, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1589068

ABSTRACT

BACKGROUND: Globally, real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the reference detection technique for SARS-CoV-2, which is expensive, time consuming, and requires trained laboratory personnel. Thus, a cost-effective, rapid antigen test is urgently needed. This study evaluated the performance of the rapid antigen tests (RATs) for SARS-CoV-2 compared with rRT-PCR, considering different influencing factors. METHODS: We enrolled a total of 214 symptomatic individuals with known COVID-19 status using rRT-PCR. We collected and tested paired nasopharyngeal (NP) and nasal swab (NS) specimens (collected from same individual) using rRT-PCR and RATs (InTec and SD Biosensor). We assessed the performance of RATs considering specimen types, viral load, the onset of symptoms, and presenting symptoms. RESULTS: We included 214 paired specimens (112 NP and 100 NS SARS-CoV-2 rRT-PCR positive) to the analysis. For NP specimens, the average sensitivity, specificity, and accuracy of the RATs were 87.5%, 98.6%, and 92.8%, respectively, when compared with rRT-PCR. While for NS, the overall kit performance was slightly lower than that of NP (sensitivity 79.0%, specificity 96.1%, and accuracy 88.3%). We observed a progressive decline in the performance of RATs with increased Ct values (decreased viral load). Moreover, the RAT sensitivity using NP specimens decreased over the time of the onset of symptoms. CONCLUSION: The RATs showed strong performance under field conditions and fulfilled the minimum performance limit for rapid antigen detection kits recommended by World Health Organization. The best performance of the RATs can be achieved within the first week of the onset of symptoms with high viral load.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing , COVID-19/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , COVID-19 Serological Testing/statistics & numerical data , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Reagent Kits, Diagnostic/virology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors , Viral Load , Young Adult
18.
Int J Infect Dis ; 114: 105-111, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587637

ABSTRACT

OBJECTIVES: The democratization of diagnostics is one of the key challenges towards containing the transmission of coronavirus disease 2019 (COVID-19) around the globe. The operational complexities of existing PCR-based methods, including sample transfer to advanced central laboratories with expensive equipment, limit their use in resource-limited settings. However, with the advent of isothermal technologies, the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is possible at decentralized facilities. METHODS: In this study, two recombinase-based isothermal techniques, reverse transcription recombinase polymerase amplification (RT-RPA) and reverse transcription recombinase-aided amplification (RT-RAA), were evaluated for the detection of SARS-CoV-2 in clinical samples. A total of 76 real-time reverse transcription PCR (real-time RT-PCR) confirmed COVID-19 cases and 100 negative controls were evaluated to determine the diagnostic performance of the isothermal methods. RESULTS: This investigation revealed equally promising diagnostic accuracy of the two methods, with a sensitivity of 76.32% (95% confidence interval 65.18-85.32%) when the target genes were RdRP and ORF1ab for RT-RPA and RT-RAA, respectively; the combination of N and RdRP in RT-RPA augmented the accuracy of the assay at a sensitivity of 85.53% (95% confidence interval 75.58-92.55%). Furthermore, high specificity was observed for each of the methods, ranging from 94.00% to 98.00% (95% confidence interval 87.40-9.76%). CONCLUSIONS: Considering the diagnostic accuracies, both RT-RPA and RT-RAA appear to be suitable assays for point-of-need deployment for the detection of the pathogen, understanding its epidemiology, case management, and curbing transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Recombinases/metabolism , Reverse Transcription , Sensitivity and Specificity
19.
BMJ Open ; 11(12): e055169, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1550964

ABSTRACT

OBJECTIVES: To establish a hospital-based platform to explore the epidemiological and clinical characteristics of patients screened for COVID-19. DESIGN: Hospital-based surveillance. SETTING: This study was conducted in four selected hospitals in Bangladesh during 10 June-31 August 2020. PARTICIPANTS: In total, 2345 patients of all age (68% male) attending the outpatient and inpatient departments of surveillance hospitals with any one or more of the following symptoms within last 7 days: fever, cough, sore throat and respiratory distress. OUTCOME MEASURES: The outcome measures were COVID-19 positivity and mortality rate among enrolled patients. Pearson's χ2 test was used to compare the categorical variables (sign/symptoms, comorbidities, admission status and COVID-19 test results). Regression analysis was performed to determine the association between potential risk factors and death. RESULTS: COVID-19 was detected among 922 (39%) enrolled patients. It was more common in outpatients with a peak positivity in second week of July (112, 54%). The median age of the confirmed COVID-19 cases was 38 years (IQR: 30-50), 654 (71%) were male and 83 (9%) were healthcare workers. Cough (615, 67%) was the most common symptom, followed by fever (493, 53%). Patients with diabetes were more likely to get COVID-19 than patients without diabetes (48% vs 38%; OR: 1.5; 95% CI: 1.2 to 1.9). The death rate among COVID-19 positive was 2.3%, n=21. Death was associated with age ≥60 years (adjusted OR (AOR): 13.9; 95% CI: 5.5 to 34), shortness of breath (AOR: 9.7; 95% CI: 3.0 to 30), comorbidity (AOR: 4.8; 95% CI: 1.1 to 21.7), smoking history (AOR: 2.2, 95% CI: 0.7 to 7.1), attending the hospital in <2 days of symptom onset due to critical illness (AOR: 4.7; 95% CI: 1.2 to 17.8) and hospital admission (AOR: 3.4; 95% CI: 1.2 to 9.8). CONCLUSIONS: COVID-19 positivity was observed in more than one-third of patients with suspected COVID-19 attending selected hospitals. While managing such patients, the risk factors identified for higher death rates should be considered.


Subject(s)
COVID-19 , Adult , Comorbidity , Female , Hospitalization , Humans , Male , Middle Aged , SARS-CoV-2 , Sentinel Surveillance
20.
BMJ Open ; 11(11): e053768, 2021 11 29.
Article in English | MEDLINE | ID: covidwho-1541885

ABSTRACT

OBJECTIVE: To estimate the proportion of SARS-CoV-2 and influenza virus coinfection among severe acute respiratory infection (SARI) cases-patients during the first wave of COVID-19 pandemic in Bangladesh. DESIGN: Descriptive study. SETTING: Nine tertiary level hospitals across Bangladesh. PARTICIPANTS: Patients admitted as SARI (defined as cases with subjective or measured fever of ≥38 C° and cough with onset within the last 10 days and requiring hospital admission) case-patients. PRIMARY AND SECONDARY OUTCOMES: Proportion of SARS-CoV-2 and influenza virus coinfection and proportion of mortality among SARI case-patients. RESULTS: We enrolled 1986 SARI case-patients with a median age: 28 years (IQR: 1.2-53 years), and 67.6% were male. Among them, 285 (14.3%) were infected with SARS-CoV-2; 175 (8.8%) were infected with the influenza virus, and five (0.3%) were coinfected with both viruses. There was a non-appearance of influenza during the usual peak season (May to July) in Bangladesh. SARS-CoV-2 infection was significantly more associated with diabetes (14.0% vs 5.9%, p<0.001) and hypertension (26.7% vs 11.5%, p<0.001). But influenza among SARI case-patients was significantly less associated with diabetes (4.0% vs 7.4%, p=0.047) and hypertension (5.7% vs 14.4%, p=0.001). The proportion of in-hospital deaths among SARS-CoV-2 infected SARI case-patients were higher (10.9% (n=31) vs 4.4% (n=75), p<0.001) than those without SARS-CoV-2 infection; the proportion of postdischarge deaths within 30 days was also higher (9.1% (n=25) vs 4.6% (n=74), p=0.001) among SARS-CoV-2 infected SARI case-patients than those without infection. No in-hospital mortality or postdischarge mortality was registered among the five coinfected SARI case-patients. CONCLUSIONS: Our findings suggest that coinfection with SARS-CoV-2 and influenza virus was not very common and had less disease severity considering mortality in Bangladesh. There was no circulating influenza virus during the influenza peak season during the COVID-19 pandemic in 2020. Future studies are warranted for further exploration.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Orthomyxoviridae , Adult , Aftercare , Bangladesh/epidemiology , Coinfection/epidemiology , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Male , Pandemics , Patient Discharge , SARS-CoV-2 , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL